
VOH.CoLAB at TREC 2020

Precision Medicine Track⋆

Miguel D. Cardoso1,2 and Flávio Martins1,2,3

1 VOH.CoLAB, Universidade NOVA de Lisboa, Lisboa, Portugal
2 NOVA LINCS, Universidade NOVA de Lisboa, Caparica, Portugal
3 Comprehensive Health Research Centre (CHRC), Lisboa, Portugal

msd.cardoso@campus.fct.unl.pt flavio.martins@vohcolab.org

Abstract. This paper describes our participation in the Scientific Ab-

stracts task of the TREC 2020 Precision Medicine Track. We present

our approach and the methods implemented, including both submitted

runs and several post-mortem experiments using different methods.

We performed experiments with Drugbank-based synonym expansion,

Rocchio-based pseudo-relevance feedback, and neural re-ranking using the

BioBERT biomedical pre-trained language models. In our evaluation, the

Rocchio-based pseudo-relevance feedback method was the best performing

method. Finally, we found that metadata and other textual fields in the

document (e.g., journal name), are useful for retrieval and, when indexed,

can improve recall-oriented metrics considerably leading to improvements

in retrieval performance across the board.

Keywords: Precision Medicine, Information Retrieval, TREC

1 Introduction

Precision Medicine is a medical model that proposes the customization of health-
care, with medical decisions, treatments, practices, or products being tailored
to a subgroup of patients, instead of a one-drug-fits-all model. This medical
model leverages research on diseases and treatments to promote such customized
healthcare to a patient. However, poor accessibility to the growing amount of
research prevents a quick and easy use of such information creating obstacles for
a successful application of Precision Medicine.

The TREC Precision Medicine Track (TREC PM), was created to try to close
the gap between the conceptualization and the practice of the model. It challenges
participants to explore methods that leverage existing document collections and
patient information and build search engines to aid clinical staff in the tailoring
of patient treatment. TREC has hosted several different challenges in related
clinical tracks throughout the years, such as TREC Clinical Decision Support
⋆ This work is supported by DSAIPA project FrailCare.AI (DSAIPA/0106/2019/02)

and by NOVA LINCS (UIDB/04516/2020) with the financial support of FCT –

Fundação para a Ciência e a Tecnologia, through national funds.

2 Cardoso et al.

Table 1. TREC PM 2020 Scientific Abstracts task example topics.

Patient 1 Patient 2 Patient 3

Disease colorectal cancer non-small cell carcinoma acute myeloid leukemia

Gene ABL1 ALK ALK

Treatment Regorafenib Alectinib Gilteritinib

Track (TREC CDS), which ran for three years between 2014–2016, which was the
precursor of the TREC Precision Medicine Track (TREC PM) introduced in 2017.
In the 2020 edition of TREC PM, the challenge is to rank scientific abstracts
from PubMed according to their relevance for supporting a given treatment for a
given patient’s disease and a known gene variant.

In this paper we describe our two submitted runs to the TREC 2020 PM
track. In addition, we present a number of post-mortem experiments and describe
our findings with a brief discussion of possible future work.

2 Track Description

In contrast with the 2019 edition, which promoted two tasks, one on Clinical
Trials and another on Scientific Abstracts, this years’ TREC Precision Medicine
track focused only on a Scientific Abstracts task. The overall task formulation is
similar to the 2019 edition of the task. However, this year, the challenge was to
rank scientific abstracts from PubMed according to their relevance for supporting
a given 1) treatment, for a 2) patient’s disease, and a 3) known gene variant.

In order to evaluate the performance of our experimental methods, we dropped
the field “treatment” from the 2019 topics. This was necessary for a better fit
between the 2019 topics and the new task formulation in 2020 allowing it to be
used as a training set and tuning any hyper-parameters.

2.1 Topics

For the 2020 edition, assessors initially developed a total of 40 topics. Each
topic, represented using a XML document, describes a patient using the following
structure with three fields: Disease name; Gene affected; Treatment proposed.

2.2 Scientific Abstracts Task

The document collection used for the 2020 edition is the same 2018 mid-december
snapshot of PubMed abstracts used for the 2019 edition. It contains more than
30M (31,677,119) abstracts. These PubMed abstracts hold the information about
its authors, its MeSH terms, the abstract itself and other fields of information.

VOH.CoLAB at TREC 2020 Precision Medicine Track 3

2.3 Drugbank

Drugbank is a website where anyone can retrieve information regarding treat-
ments, genes and other multitude of health related concepts. We used the data
available from this website and automatically retrieved synonyms, descriptions
and indications of the treatments presented in the topics. Ultimately we only
used synonyms information, with an average of 1.27 synonyms per treatment.

3 Evaluation and Methods

With the goal of creating a Precision Medicine search engine, we explored several
strategies described in this section. We used Elasticsearch as our database to
store the documents, and also as our primary search engine, since it has built-in
information retrieval methods.

Elasticsearch was our go-to decision since it is widely used for Information
Retrieval and it is open-source. With Elasticsearch as our primary search engine,
we then defined strategies to expand the queries but also explored re-rank methods.
We used stop words used in the PubMed search engine, pubmed list4, and the
Galago rmstop list5 when computing relevance models.

3.1 Hardware

All of the development occurred in JupyterHub hosted on a server. Furthermore,
the dataset and Elasticsearch were also hosted on the same machine with the
following hardware specifications:

Motherboard ASUS P9X79 PRO
CPU Intel Core i7-3930K Processor (6 cores, 12 threads, 12M)
RAM 64 GB DDR3 (1333Mhz)

3.2 Collection Pre-processing

The dataset contains several compressed XML files (.gz), that were parsed and
indexed in two different ways into Elasticsearch. We named these indexes, filtered

corpus and unfiltered corpus. However, the latter was only created post-mortem.
We note that unfiltered corpus index was later implemented due to the poor recall
of the methods applied on the filtered corpus index. Thus we speculated that we
were removing relevant information.

4 https://github.com/igorbrigadir/stopwords/blob/master/en/pubmed.txt
5 https://github.com/igorbrigadir/stopwords/blob/master/en/galago_rmstop.

txt

https://github.com/igorbrigadir/stopwords/blob/master/en/pubmed.txt
https://github.com/igorbrigadir/stopwords/blob/master/en/galago_rmstop.txt
https://github.com/igorbrigadir/stopwords/blob/master/en/galago_rmstop.txt

4 Cardoso et al.

The filtered corpus Here we only indexed the abstracts that did not had animal
or animals on its mesh terms. This filtering reduced the number of documents
to 22,826,528 from 31,677,119, which means that 8,850,591 were documents
that related to animals. Besides filtering out, we only used id, title, abstract text,
mesh terms and substances fields from the original documents.

The Elasticsearch documents had the following schema:

id text
title text
body text
mesh text

The unfiltered corpus Here we did not filter out any documents. We indexed
all the text in the PubMed Abstract concatenated into the body field. The total
documents present in this index are 31,677,119.

The Elasticsearch documents had the following schema:

id text
title text
body text

3.3 Runs

We used Okapi BM25 as the retrieval function to get the documents from
Elasticsearch. BM25 is a bag-of-words function that ranks a set of documents
according to the given query, ignoring the proximity of its terms in the document
itself. BM25 Equation (1) makes use of well-known notion of inverse document
frequency (IDF) Equation (2) to score word importance in the collection (rarity).

We did not perform any type of tuning on its parameters and used the
recommended default parameters of k1 = 1.2 and b = 0.75

BM25(D, Q) =
n∑

i=1
IDF(qi) · f(qi, D) · (k1 + 1)

f(qi, D) + k1 ·
(

1 − b + b |D|
avgdl

) (1)

IDF(qi) = ln
(

N − n(qi) + 0.5
n(qi) + 0.5 + 1

)
(2)

VOH.CoLAB at TREC 2020 Precision Medicine Track 5

Run run_bm25 For our baseline, we queried Elasticsearch by all the elements
in the presented topic, (treatment, gene, disease). Giving no specific weight to
any element of the topic, besides stating that the documents found must have
both the gene and disease but also should (not must) have the treatment in it.

Run bm25_synonyms This run expands the information of the query with
all the synonyms found for given treatment in each topic using Drugbank. The
remaining execution of this run is similar to run_bm25.

3.4 Not Submitted Experiments

BioBERT We experimented with BioBERT 6 [3] which is a fine-tuned version
of the well-known language model Bert [2]. BioBERT was fined-tuned using
PubMed abstracts, therefore, the use of this language model apriori appeared to
be quite useful for this task. First, we used this pre-trained model to compute
both the embeddings of the retrieved documents and the query so that can we
later use them. These initial documents were retrieved using the same method as
in run_bm25. Here we experimented with up to 10000 initial retrieved documents,
starting at 1000 with a step of 250. The embeddings were used to re-rank the
retrieved documents according to their cosine similarity to the query.

Afterwards, we decided to linearly combine the bm25 scores that elastic
search produces, and the cosine similarity scores. The BM25 scores had to be
normalized between [0, 1] since the cosine similarity also ranges from [0, 1]. We
used this final combined score to re-rank the retrieved documents.

In order to get the weights for the linear combination, we performed a linear
search starting with α = 0, increasing it by 0.1 in each step, totaling in 10 steps.
At each step we validated the results against the 2019 relevance judgments. The
parameter α defines the weight given to the cosine similarity score. Henceforth,
the higher the α, the higher the weight given to BioBERT cosine similarity
between the query and the given document.

We optimized the weights and number of documents retrieved based on Rprec,
map and num_rel_ret, in this exact order. We found that α = 0.4 and a number
of initial retrieved documents over 2000, those metrics were optimal.

In this experiment, we also tested different ways of building the query inspired
by Dai et al. [1]. However, we did not notice any improvement. We also attempted
to re-rank the documents based on the top-k initially retrieved documents and
not only on the query, which also did not yield any improvement.

Rocchio Expansion We leverage the Rocchio formula as seen in Eq. (3)

Q⃗m = (α · Q⃗o) +

b · 1
|Dr|

·
∑

D⃗j∈Dr

D⃗j

 −

c · 1
|Dnr|

·
∑

D⃗k∈Dnr

D⃗k

 , (3)

6 https://github.com/dmis-lab/biobert

https://github.com/dmis-lab/biobert

6 Cardoso et al.

where Qo, Dr, Dnr are the original query, top documents and bottom documents,
respectively. In order to get Dj and Dk, we retrieved two sets of 1000 documents
using the methods described in Section 3.3. We then selected the top 100 and
bottom 5 documents, defined the parameters a,b and c, to compute Qm.

Having Q⃗m calculated, we retrieved the top 75 terms of the query with the
highest score, joined all of those terms into a query boosting each term with its
score and queried Elasticsearch once again, retrieving another 1000 documents.
We fined tuned Equation (3) parameters a,b and c using the 2019 results. We
used a = 6, b = 5 and c = 5 as the final parameters.

Rocchio Rerank Alternatively to Section 3.4, after the initial retrieval and
consequent Q⃗m computation, here we decided to use rocchio to re-rank the
initially retrieved documents. In this experiment we used Qm as the ground truth
vector and computed the similarity scores of all documents against this vector.

RM3 Expansion For this experiment we created a feedback relevance model
using the top 20 documents and then selected the top 20 terms. Having these 20
terms, we normalized their weights between [0,1], and queried Elasticsearch once
again, with all of these 20 terms boosting them with their respective weights. This
feedback relevance model, P (w | θF), is computed using the following equation:

P (w | θF) ∝
∑
d∈R

P (w | d) · P (q | d) · P (d)︸ ︷︷ ︸
document score

(4)

∝ 1
|R|

∑
d∈R

P (w | d) · BM25(q, d),

where R is the top N relevant documents and BM25(q, d) is the BM25 score
returned by Elasticsearch for document d matching query q. The relevance model
P (w | R) ≈ P (w | θF) for query q is a weighted average of the terms in the top
documents retrieved, where the weights are the BM25 scores for the query q.
After Eq. (4) is computed, we interpolate the original query model weights, θq,
with the estimated relevance model, θF , using parameter λ = 0.5 as follows,

P (w | θq′) = λ · P (w | θq) + (1 − λ) · P (w | θF). (5)

4 Results

In this section we display the benchmarks of all of our methods against the
judgments of the 2020 edition. On this edition, the evaluation was divided into
two phases. The phase 1 judgments evaluate if the documents retrieved are on
the precision medicine topic and how much they match towards the query tokens
individually. While the phase 2 judgments evaluate if the documents retrieved
are relevant towards the relevant query as an whole. The phase 2 judgments were
constructed by manually labeling the documents up to 100 documents by topic.

VOH.CoLAB at TREC 2020 Precision Medicine Track 7

Table 2. TREC PM 2020 Scientific Abstracts task Phase 1 results.

filtered corpus unfiltered corpus

infNDCG P10 Rprec infNDCG P10 Rprec

median 0.4316 0.4645 0.3259 0.4316 0.4645 0.3259

run_bm25* 0.3587 0.4452 0.2521 0.4538 0.5000 0.3486

run_bm25_syn* 0.2357 0.2839 0.1706 0.3587 0.3677 0.2862

rocchio_cosine 0.3567 0.4452 0.2478 0.4538 0.5000 0.3486

rocchio_exp 0.3941 0.4710 0.2892 0.4843 0.5032 0.3698
BioBERT_40%_2000 0.3567 0.4452 0.2477 0.4518 0.5000 0.3486

RM3 0.3024 0.3742 0.2148 0.4048 0.4226 0.2803

* official runs

Table 3. TREC PM 2020 Scientific Abstracts task Phase 2 results.

filtered corpus unfiltered corpus

ndcg@30 ndcg@5 ndcg@30 ndcg@5

median 0.2857 0.2529 0.2857 0.2529

run_bm25* 0.3009 0.2706 0.3042 0.2612

run_bm25_syn* 0.2476 0.2242 0.2701 0.2249

rocchio_cosine 0.3039 0.2706 0.3042 0.2612

rocchio_exp 0.3332 0.3045 0.3228 0.2714
BioBERT_40%_2000 0.3019 0.2706 0.3042 0.2612

RM3 0.2731 0.2597 0.2602 0.2391

* official runs

As seen in Table 2 none of our runs and post-mortem experiences were above
the median using the filtered corpus index. However, when we used the unfiltered
corpus index, the rocchio based method showed better results. However, in phase
2 as shown in Table 3, the better results were on the filtered corpus index. In
addition we can also note that the Rocchio methods outperforms RM3 relevance
model in all collections and displayed metrics.

The synonym-based query expansion methods always yields worse results due
to the fact that some of the synonyms presents on Drugbank are their chemical
names. For example, Alectinib had the synonym 6-dimethyl-8-[4-(morpholin-4-

yl)piperidin-1-yl]-11-oxo-6, which after tokenization creates unnecessary tokens
that promote worse results. In the previous results tables we decided to not
show the results of these methods since run_bm25_syn already performs worse
than run_bm25. Thus, applying rocchio cosine or expansion, RM3 or BioBERT
methods would consequently yield poorer results than the same methods that
used the run_bm25 as the first step.

It is a common pattern in Information Retrieval to expand the information
presented in the query or even in the text to retrieve before storing it. However,
in our early experiments with this approach we did not see any improvement on

8 Cardoso et al.

the results. Henceforth, we did not explore further besides expanding the query
with synonyms of the treatments. In this experiments we also concluded that big
queries slow down the system significantly. Expanding the document itself with
related data from SNOMED CT7 or other healthcare sources at indexing time,
instead of expanding the query, may yield a more efficient system.

Initially, we hypothesized that pre-filtering the corpus could help and make
the search more effective. However, this was not the case, as shown in Table 2,
where we were merely interested on how well the system matched the topics as
individual tokens. We believe that in phase 1, the filtering removed metadata
that could have been helpful. In phase 2 results, shown in Table 3, the behaviour
was mostly similar, except on the non-submitted experiments rocchio_exp and
RM3, where the filtered corpus showed a slight improvement. The reason for
these results deserves further investigation, nonetheless, we suspect that it is
mostly due to the relevance judgments two-phase annotation model of the task.
For phase 2, accessors labeled the documents manually by reading them, thus the
documents were labeled solely by their content, which is the same information
that the methods applied for the filtered corpus had access to.

In addition, we experimented with BioBERT but it did not yield good
results when compared to the Rocchio Expansion method. BioBERT has a
maximum limit of context it can work with, which is a limiting factor when
working with long documents. We did not employ any method to compensate
this limitation and just cropped the document so that it could fit in BioBERT’s
context window. Furthermore, in our experiments, BioBERT promotes BM25
low-scoring documents, which ultimately yields poorer results if we increase the
number of re-ranked documents.

5 Conclusions and Future Work

Finally, we conclude that in this multi-stage retrieval pipeline, the initial method
of retrieval is of the utmost importance. Most of the methods that we employed
a the second stage of retrieval, especially Rocchio and other pseudo-relevant
feedback methods, require a good first stage retrieval to get an initial set of useful
and relevant documents. Therefore, to improve the chances of the second stage
method, the first retrieval should be tuned for P5, P10, and P20. In addition, we
also conclude that no pre-filtering should be done since there is meta-data and
other fields that are relevant as they improve the results.

As future work we look towards document expansions methods at indexing
time and adapting BioBERT methods to longer documents. We will explore
methods making use of medical knowledge-bases as well as semantic search using
neural-based retrieval methods to improve the second stage retrieval.

7 http://www.snomed.org/

VOH.CoLAB at TREC 2020 Precision Medicine Track 9

References

1. Dai, Z., Callan, J.: Deeper text understanding for ir with contextual neural
language modeling. Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval (Jul 2019),
http://dx.doi.org/10.1145/3331184.3331303

2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep
bidirectional transformers for language understanding (2019)

3. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H., Kang, J.: BioBERT: a
pre-trained biomedical language representation model for biomedical text min-
ing. Bioinformatics (09 2019), https://doi.org/10.1093/bioinformatics/
btz682

http://dx.doi.org/10.1145/3331184.3331303
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682

	VOH.CoLAB at TREC 2020 Precision Medicine Track

